A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints.

نویسندگان

  • P Büchler
  • N A Ramaniraka
  • L R Rakotomanana
  • J P Iannotti
  • A Farron
چکیده

OBJECTIVE The objective of the present study was to develop a numerical model of the shoulder able to quantify the influence of the shape of the humeral head on the stress distribution in the scapula. The subsequent objective was to apply the model to the comparison of the biomechanics of a normal shoulder (free of pathologies) and an osteoarthritic shoulder presenting primary degenerative disease that changes its bone shape. DESIGN Since the stability of the glenohumeral joint is mainly provided by soft tissues, the model includes the major rotator cuff muscles in addition to the bones. BACKGROUND No existing numerical model of the shoulder is able to determine the modification of the stress distribution in the scapula due to a change of the shape of the humeral head or to a modification of the glenoid contact shape and orientation. METHODS The finite element method was used. The model includes the three-dimensional computed tomography-reconstructed bone geometry and three-dimensional rotator cuff muscles. Large sliding contacts between the reconstructed muscles and the bone surfaces, which provide the joint stability, were considered. A non-homogenous constitutive law was used for the bone as well as non-linear hyperelastic laws for the muscles and for the cartilage. Muscles were considered as passive structures. Internal and external rotations of the shoulders were achieved by a displacement of the muscle active during the specific rotation (subscapularis for internal and infrapinatus for external rotation). RESULTS The numerical model proposed is able to describe the biomechanics of the shoulder during rotations. The comparison of normal vs. osteoarthritic joints showed a posterior subluxation of the humeral head during external rotation for the osteoarthritic shoulder but no subluxation for the normal shoulder. This leads to important von Mises stress in the posterior part of the glenoid region of the pathologic shoulder while the stress distribution in the normal shoulder is fairly homogeneous. CONCLUSION This study shows that the posterior subluxation observed in clinical situations for osteoarthritic shoulders may also be cause by the altered geometry of the pathological shoulder and not only by a rigidification of the subscapularis muscle as often postulated. This result is only possible with a model including the soft tissues provided stability of the shoulder. RELEVANCE One possible cause of the glenoid loosening is the eccentric loading of the glenoid component due to the translation of the humeral head. The proposed model would be a useful tool for designing new shapes for a humeral head prosthesis that optimizes the glenoid loading, the bone stress around the implant, and the bone/implant micromotions in a way that limits the risks of loosening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Studies on Friction Stir Welding Processes of Polyethylene Plates

One of the interesting state-of-the-art approaches to welding is the process of friction stir welding (FSW). In comparison with the fusion processes, FSW is an advantageous method as it is suitable for the non-fusion weldable alloys and polymeric materials joining. Regarding the materials pure solid state joining, it also provides joints with less distortion and enhanced mechanical properties. ...

متن کامل

APPLICATION OF FINITE ELEMENT MODEL UPDATING FOR DAMAGE ASSESSMENT OF SPACE STRUCTURE USING CHARGED SYSTEM SEARCH ALGORITHM

Damage assessment is one of the crucial topics in the operation of structures. Multiplicities of structural elements and joints are the main challenges about damage assessment of space structure. Vibration-based damage evaluation seems to be effective and useful for application in industrial conditions and the low-cost. A method is presented to detect and assess structural damages from changes ...

متن کامل

Finite element model updating of bolted lap joints implementing identification of joint affected region parameters

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-themecolor: text1; mso-ansi-lang...

متن کامل

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical biomechanics

دوره 17 9-10  شماره 

صفحات  -

تاریخ انتشار 2002